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Abstract. We study the relations between the equations of first-order Lagrangian field theory on
fibre bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase
space of covariant Hamiltonian field theory. If a Lagrangian is hyperregular, these equations are
equivalent. A degenerate Lagrangian requires a set of associated Hamiltonian forms in order
to exhaust all solutions of the Euler–Lagrange equations. The case of quadratic degenerate
Lagrangians is studied in detail.

1. Introduction

The finite-dimensional covariant Hamiltonian approach to field theory has been vigorously
developed since the 1970s in its multisymplectic and polysymplectic variants [4, 5, 12]. In
the framework of this approach, one deals with the following types of partial differential
equations (PDEs): Euler–Lagrange and Cartan equations in Lagrangian formalism, Hamilton–
De Donder equations in multisymplectic Hamiltonian formalism, covariant Hamilton equations
and constrained Hamilton equations in polysymplectic Hamiltonian formalism. If a Lagrangian
is hyperregular, all these PDEs are equivalent. This work addresses degenerate semiregular and
almost-regular Lagrangians. From the mathematical viewpoint, these notions of degeneracy
are particularly appropriate for the study of relations between the above-mentioned PDEs.
From the physical one, Lagrangians of almost all field theories are of these types.

To formulate our results, let us characterize briefly the equations under consideration.
Given a fibre bundleY → X coordinated by(xλ, yi), let

L = Lω : J 1Y → n∧ T ∗X ω = dx1 ∧ . . .dxn n = dimX (1)

be a first-order LagrangianL on the jet bundleJ 1Y → X. The first variational formula
provides the associated Euler–Lagrange equations. The Cartan equations characterize the
variational problem on the repeated jet manifoldJ 1J 1Y for the Poincaŕe–Cartan formHL.
The Poincaŕe–Cartan formHL yields the Legendre morphism̂HL of J 1Y to the homogeneous
Legendre bundle

ZY = T ∗Y ∧ (
n−1∧ T ∗X) (2)

which is the affine
n−1∧ T ∗X-valued dual ofJ 1Y → Y provided with the canonical exterior

n-form4Y (18) [2,5]. If ĤL(J 1Y ) is an embedded subbundle ofZY → Y , the pull-back of4Y
yields the Hamilton–De Donder equations onĤL(J 1Y ). If a LagrangianL is almost regular,
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these equations are quasi-equivalent to the Cartan equations, i.e., there is a surjection of the
set of solutions of the Cartan equations onto that of the Hamilton–De Donder equations [5].

A LagrangianL yields the Legendre map̂L of J 1Y to the Legendre bundle

5 = n∧ T ∗X⊗
Y
V ∗Y ⊗

Y
T X (3)

equipped with the holonomic coordinates(xλ, yi, pλi ). 5 is provided with the canonical
polysymplectic form� (22), and is seen as a momentum phase space of fields [3, 6, 7, 9, 11].
We have the one-dimensional affine bundle

πZ5 : ZY → 5. (4)

Given any sectionh of ZY → 5, the pull-back

H = h∗4Y = pλi dyi ∧ ωλ −Hω ωλ = ∂λcω (5)

is a Hamiltonian form on5 [2,4,12]. This is the Poincaré–Cartan form of the Lagrangian

LH = (pλi yiλ −H)ω (6)

on the jet manifoldJ 15. The associated Euler–Lagrange equations are the covariant Hamilton
equations (31a), (31b). Every Hamiltonian formH (6) yields the Hamiltonian map̂H (29) of
5 to J 1Y .

The results of this paper demonstrate that polysymplectic Hamiltonian formalism can
provide an adequate description of degenerate field systems which do not necessarily possess
gauge symmetries.

We show that, ifr : X → 5 is a solution of the covariant Hamilton equations for
a Hamiltonian formH associated with a semiregular LagrangianL and if r lives in the
Lagrangian constraint spacêL(J 1Y ), thenĤ ◦ r is a solution of the Cartan equations for
L, while the projections of r ontoY is that of the Euler–Lagrange equations. The converse
assertion is more intricate. One needs a complete set of associated Hamiltonian forms in order
to exhaust all solutions of the Euler–Lagrange equations (but not the Cartan equations). Given
a solutions of the Euler–Lagrange equations,L̂ ◦ J 1s is a solution of the Hamilton equations
for an associated Hamiltonian formH iff

Ĥ ◦ L̂ ◦ J 1s = J 1s. (7)

If a solution s of the Cartan equations provides the solutionL̂ ◦ s of covariant Hamilton
equations, its projections onY is a solution of the Euler–Lagrange equations.

In view of these relations, one may conclude that the covariant Hamilton equations contain
additional conditions in comparison with the Euler–Lagrange and Cartan equations. In the
case of an almost-regular Lagrangian, we can introduce the constrained Hamilton equations
which are weaker than the Hamilton equations restricted to the Lagrangian constraint space
[3, 4, 13]. They are equivalent to the Hamilton–De Donder equations and, consequently, are
quasi-equivalent to the Cartan equations.

We provide the detailed analysis of degenerate quadratic Lagrangian systems, appropriate
for application to many physical models. Given a quadratic LagrangianL, we find a complete
set of associated Hamiltonian forms. The key point is the splitting ofJ 1Y into the dynamic
sector and the gauge one coinciding with the kernel of the Legendre mapL̂. As a consequence,
one can separate a part of the Hamilton equations independent of momenta which play the
role of gauge-type conditions, while the rest equations restricted to the Lagrangian constraint
space coincide with the constrained Hamilton equations, and are quasi-equivalent to the Cartan
equations. We observe that the main features in gauge theory are not directly related to the
gauge invariance condition, but are common in all field models with degenerate almost-regular
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quadratic Lagrangians. The important peculiarity of the Hamiltonian description of these
models lies in the fact that, in comparison with a LagrangianL, any associated Hamiltonian
form H and the LagrangianLH (6) contain gauge fixing terms. Moreover, one can find a
complete set of non-degenerate Hamiltonian forms associated with a degenerate quadratic
Lagrangian, that is essential for quantization.

The plan of the paper is as follows. Section 2 presents some technical preliminaries. In
section 3, the relations between Euler–Lagrange, Cartan and Hamilton–De Donder equations
are summarized in a form suitable for our purposes. Section 4 provides a brief exposition
of covariant Hamiltonian dynamics. In comparison with our previous works, we use the
LagrangianLH (6) as a convenient tool in order to introduce the covariant Hamilton equations.
Section 5 is devoted to the above-mentioned relations between degenerate Lagrangian and
Hamiltonian systems. Degenerate quadratic Lagrangian systems are studied in section 6.

2. Technical preliminaries

All maps throughout the paper are smooth, while manifolds are real, finite-dimensional,
Hausdorff, second-countable and connected. A base manifoldX is oriented.

Let us recall some notions [4, 10, 14]. Given a fibre bundleY → X, the s-order jet
manifoldJ sY is endowed with the adapted coordinates(xλ, yi3), 0 6 |3| 6 s, where3 is a
symmetric multi-index(λk . . . λ1), |3| = k. The repeated jet manifoldJ 1J 1Y is coordinated
by (xλ, yi, yiλ, ŷ

i
λ, y

i
λµ).

Exterior formsφ onJ sY , s = 0, 1, . . . , are naturally identified with their pull-backs onto
J s+1Y . There is the exterior algebra homomorphism

h0 : φλ dxλ + φ3i dyi3 7→ (φλ + φ3i y
i
λ+3) dxλ (8)

called the horizontal projection. It sends exterior forms onJ sY onto the horizontal forms
on J s+1Y → X, and vanishes on the contact formsθ i3 = dyi3 − yiλ+3 dxλ. Recall also the
total derivativedλ = ∂λ + yiλ+3∂

3
i and the horizontal differential dHφ = dxλ ∧ dλφ such that

h0 ◦ d = dH ◦ h0.
We regard a connection on a fibre bundleY → X as a global section

0 = dxλ ⊗ (∂λ + 0iλ∂i) (9)

of the affine jet bundleπ1
0 : J 1Y → Y . Sections of the underlying vector bundle

T ∗X⊗
Y
V Y → Y are called soldering forms.

3. Lagrangian dynamics

Given a LagrangianL and its Lepagean equivalentHL, the first variational formula of the
calculus of variations provides the canonical decomposition of the Lie derivative ofL along a
projectable vector fieldu onY :

LJ 1uL = uV cEL + dHh0 (ucHL) (10)

whereuV = (ucθ i)∂i and

EL = (∂i − dλ∂λi )Lθ i ∧ ω : J 2Y → T ∗Y ∧ ( n∧ T ∗X) (11)

is the Euler–Lagrange operator. Its kernel is the Euler–Lagrange equation onY

(∂i − dλ∂λi )L = 0. (12)

We will restrict our consideration to the Poincaré–Cartan form

HL = L + πλi θ
i ∧ ωλ πλi = ∂λi L. (13)
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Being a Lepagean equivalent of the LagrangianL = h0(HL) onJ 1Y , this is also a Lepagean
equivalent of the Lagrangian

L = ĥ0(HL) = (L + (ŷiλ − yiλ)πλi )ω ĥ0(dy
i) = ŷiλ dxλ (14)

on the repeated jet manifoldJ 1J 1Y . The Euler–Lagrange operator forL reads

EL : J 1J 1Y → T ∗J 1Y ∧ ( n∧ T ∗X)
EL = [(∂iL− d̂λπλi + ∂iπ

λ
j (ŷ

j

λ − yjλ)) dyi + ∂λi π
µ

j (ŷ
j
µ − yjµ) dyiλ] ∧ ω

d̂λ = ∂λ + ŷiλ∂i + yiλµ∂
µ

i .

(15)

Its kernel KerEL ⊂ J 1J 1Y is the Cartan equations

∂λi π
µ

j (ŷ
j
µ − yjµ) = 0 (16a)

∂iL− d̂λπλi + (ŷjλ − yjλ)∂iπλj = 0. (16b)

SinceEL|J 2Y = EL, the Cartan equations (16a), (16b) are equivalent to the Euler–Lagrange
equations (12) on integrable sections ofJ 1Y → X. These equations are equivalent in the
case of regular Lagrangians. On sectionss : X→ J 1Y , the Cartan equations (16a), (16b) are
equivalent to the relation

s∗(ucdHL) = 0 (17)

which is assumed to hold for all vertical vector fieldsu onJ 1Y → X.
The Poincaŕe–Cartan formHL (13) yields the above-mentioned Legendre morphism

ĤL : J 1Y→
Y
ZY (p

µ

i , p) ◦ ĤL = (πµi ,L− πµi yiµ)

where the bundleZY (2) is equipped with holonomic coordinates(xλ, yi, pλi , p). Due to the

monomorphismZY ↪→
n∧ T ∗Y , the bundleZY is endowed with the pull-back

4Y = pω + pλi dyi ∧ ωλ (18)

of the canonical form2 on
n∧ T ∗Y whose exterior differential d2 is then-multisymplectic

form in the sense of Martin [1,8].
LetZL = ĤL(J 1Y ) be an embedded subbundleiL : ZL ↪→ ZY ofZY → Y . It is provided

with the pull-back De Donder form4L = i∗L4Y . We have

HL = Ĥ ∗L4L = Ĥ ∗L(i∗L4Y ). (19)

By analogy with the Cartan equations (17), the Hamilton–De Donder equations for sectionsr

of ZL→ X are written as

r∗(ucd4L) = 0 (20)

whereu is an arbitrary vertical vector field onZL→ X.

Theorem 1 ( [5]). Let the Legendre morphism̂HL be a submersion. Then a sections of
J 1Y → X is a solution of the Cartan equations (17) iffĤL ◦ s is a solution of the Hamilton–
De Donder equations (20); i.e., as was mentioned above, the Cartan and Hamilton–De Donder
equations are quasi-equivalent.
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4. Covariant Hamiltonian dynamics

Given a fibre bundleY → X, let

π5X = π ◦ π5Y : 5→ Y → X

be the Legendre bundle (3). The canonical polysymplectic form, Hamiltonian connections
and Hamiltonian forms are the main ingredients in the covariant Hamiltonian dynamics on5

(see [2,4,12] for a detailed exposition).
Let us consider the canonical bundle monomorphism

θ = −pλi dyi ∧ ω ⊗ ∂λ : 5↪→
Y

n+1∧ T ∗Y ⊗
Y
T X. (21)

The polysymplectic form on5 is defined as a uniqueTX-valued(n + 2)-form

� = dpλi ∧ dyi ∧ ω ⊗ ∂λ (22)

such that the relation�cφ = −d(θcφ) holds for any exterior one-formφ onX. A connection

γ = dxλ ⊗ (∂λ + γ iλ∂i + γ µλi∂
i
µ) (23)

on 5 → X is called a Hamiltonian connection if the exterior formγ c� is closed. A
Hamiltonian formH on5 has been defined above as the pull-backh∗4Y (5) of the canonical
form4Y (18) by a sectionh of the fibre bundle (4).

Theorem 2 ([10, 12]).For every Hamiltonian formH (5), there exists an associated
Hamiltonian connection such that

γ c� = dH γ iλ = ∂iλH γ λλi = −∂iH. (24)

Conversely, for any Hamiltonian connectionγ , there exists a local Hamiltonian formH on a
neighbourhood of any pointq ∈ 5 such that the relation (24) holds.

Hamiltonian forms on5 constitute an affine space modelled over the linear space of
horizontal densitiesH̃ = H̃ω on5→ X. This is an immediate consequence of the fact that

(4) is an affine bundle modelled over the pull-back vector bundle5×
X

n∧ T ∗X → 5. Every

connection0 (9) onY → X defines the section

h0 : dyi 7→ dyi − 0iλdxλ
of the affine bundleZY → 5 and the corresponding Hamiltonian form

H0 = h∗04Y = pλi dyi ∧ ωλ − pλi 0iλω. (25)

As a consequence, given a connection0 on Y → X, every Hamiltonian formH admits the
decomposition

H = H0 − H̃0 = pλi dyi ∧ ωλ − pλi 0iλω − H̃0ω. (26)

Any bundle morphism

8 = dxλ ⊗ (∂λ +8i
λ∂i) : 5→

Y
J 1Y (27)

called a Hamiltonian map, defines the Hamiltonian form

H8 = 8cθ = pλi dyi ∧ ωλ − pλi 8i
λω. (28)

Every Hamiltonian formH (5) yields the Hamiltonian map̂H such that

yiλ ◦ Ĥ = ∂iλH. (29)
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As was mentioned above, a Hamiltonian formH (5) on5 can be seen as the Poincaré–
Cartan form of the LagrangianLH = h0(H) (6) on the jet manifoldJ 15. The Euler–Lagrange
operator (11) forLH , called the Hamilton operator forH , is

EH : J 15→ T ∗5 ∧ ( n∧ T ∗X)
EH = [(yiλ − ∂iλH) dpλi − (pλλi + ∂iH) dyi ] ∧ ω. (30)

Its kernel is the covariant Hamilton equations

yiλ = ∂iλH (31a)

pλλi = −∂iH. (31b)

It is readily observed that all Hamiltonian connections (24) associated with a Hamiltonian
formH live in the kernel of the Hamilton operatorEH . Consequently, every integral section
J 1r = γ ◦r of a Hamiltonian connectionγ associated with a Hamiltonian formH is a solution
of the Hamilton equations (31a), (31b).

Note that, similarly to the Cartan equations (17), the Hamilton equations (31a), (31b) are
equivalent to the condition

r∗(ucdH) = 0 (32)

for any vertical vector fieldu on5→ X. The Hamilton equation (31a) can also be written as
the equality

J 1(π5Y ◦ r) = Ĥ ◦ r. (33)

5. Lagrangian and Hamiltonian degenerate systems

Let us study the relations between Hamilton and Euler–Lagrange equations when a Lagrangian
is degenerate. Their main peculiarity is that there is a set of Hamiltonian forms associated with
the same degenerate Lagrangian.

Given a LagrangianL, let

L̂ : J 1Y→
Y
5 pλi ◦ L̂ = πλi

be the corresponding Legendre map. A Hamiltonian formH is said to be associated with a
LagrangianL if H satisfies the relations

L̂ ◦ Ĥ ◦ L̂ = L̂ (34a)

H = HĤ + Ĥ ∗L. (34b)

A glance at the relation (34a) shows that̂L ◦ Ĥ is the projector

p
µ

i (q) = ∂µi L(xµ, yi, ∂jλH(q)) q ∈ NL (35)

from 5 onto the Lagrangian constraint spaceNL = L̂(J 1Y ). Accordingly, Ĥ ◦ L̂ is the
projector fromJ 1Y onto Ĥ (NL). A Hamiltonian form is called weakly associated with
a LagrangianL if the condition (34b) holds on the Lagrangian constraint spaceNL. The
following assertions take place [4,10].

Proposition 3. If a Hamiltonian map8 (27) obeys the relation (34a), then the Hamiltonian
formH = Hφ + 8∗L is weakly associated with the LagrangianL. If 8 = Ĥ , thenH is
associated withL.

Proposition 4. Any Hamiltonian formH weakly associated with a LagrangianL obeys the
relation

H |NL = Ĥ ∗HL|NL (36)

whereHL is the Poincaŕe–Cartan form (13).
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The difference between associated and weakly associated Hamiltonian forms lies in the
following. LetH be an associated Hamiltonian form, i.e., the equality (34b) holds everywhere
on5. It takes the coordinate form

H(q) = pµi ∂iµH− L(xµ, yj , ∂jλH(q)) q ∈ NL.
Acting on this equality by the exterior differential, we obtain the relations

∂µH(q) = −(∂µL) ◦ Ĥ (q) ∂iH(q) = −(∂iL) ◦ Ĥ (q) q ∈ NL
(p

µ

i − (∂µi L)(xµ, yj , ∂jλH))∂iµ∂aαH = 0.

The last of these shows that the associated Hamiltonian form is not regular outside the
Lagrangian constraint spaceNL. In particular, any Hamiltonian form is weakly associated
with the LagrangianL = 0, while the associated Hamiltonian forms are only of the formH0
(25).

Something more can be said in the case of semiregular Lagrangians. A LagrangianL is
called semiregular if the pre-imagêL−1(q) of any pointq ∈ NL is a connected submanifold
of J 1Y . We now introduce the following lemma [10,15].

Lemma 5. The Poincaŕe–Cartan formHL for a semiregular LagrangianL is constant on the
connected pre-imagêL−1(q) of any pointq ∈ NL.

Corollary 6. All Hamiltonian forms weakly associated with a semiregular LagrangianL

coincide with each other on the Lagrangian constraint spaceNL, and the Poincaŕe–Cartan
formHL (13) forL is the pull-back

HL = L̂∗H (πλi y
i
λ − L)ω = H(xµ, yj , πµj )ω (37)

of any such a Hamiltonian formH .

Corollary 6 enables us to connect Euler–Lagrange and Cartan equations for a semiregular
LagrangianL with Hamilton equations for Hamiltonian forms weakly associated withL.

Theorem 7. Let a sectionr of5→ X be a solution of the Hamilton equations (31a), (31b)
for a Hamiltonian formH weakly associated with a semiregular LagrangianL. If r lives in
the constraint spaceNL, the sections = π5Y ◦ r of Y → X satisfies the Euler–Lagrange
equations (12), whiles = Ĥ ◦ r obeys the Cartan equations (16a), (16b).

Proof. Acting by the exterior differential on the relation (37), we obtain the relation

(yiλ − ∂iλH ◦ L̂) dπλi ∧ ω − (∂iL + ∂i(H ◦ L̂)) dyi ∧ ω = 0 (38)

which is equivalent to the system of equalities

∂λi π
µ

j (y
j
µ − ∂jµH ◦ L̂) = 0 ∂iπ

µ

j (y
j
µ − ∂jµH ◦ L̂)− (∂iL + (∂iH) ◦ L̂) = 0.

Using these equalities and the relation(pλi , y
i
µ, p

λ
µi) ◦ J 1L̂ = (πλi , ŷiµ, d̂µπλi ), one can easily

see thatEL = (J 1L̂)∗EH , whereEL is the Euler–Lagrange–Cartan operator (15). Letr be a
section of5→ X which lives in the Lagrangian constraint spaceNL, ands = Ĥ ◦ r. Then
we have

r = L̂ ◦ s J 1r = J 1L̂ ◦ J 1s.

If r is a solution of the Hamilton equations, the exterior formEH vanishes onJ 1r(X). Hence,
the pull-back formEL = (J 1L̂)∗EH vanishes onJ 1s(X). It follows thats obeys the Cartan
equations (16a), (16b). We obtain from the equality (33) thats = J 1s, s = π5Y ◦ r. Hence,s
is a solution of the Euler–Lagrange equations. �
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The same result can be obtained from the relation

L = (J 1L̂)∗LH (39)

whereL is the Lagrangian (14) onJ 1J 1Y andLH is the Lagrangian (6) onJ 15.

Theorem 8. Given a semiregular LagrangianL, let a sections of the jet bundleJ 1Y → X

be a solution of the Cartan equations (16a), (16b). LetH be a Hamiltonian form weakly
associated withL, and letH satisfy the relation

Ĥ ◦ L̂ ◦ s = J 1(π1
0 ◦ s). (40)

Then, the sectionr = L̂ ◦ s of the Legendre bundle5 → X is a solution of the Hamilton
equations (31a), (31b) forH .

Proof. The Hamilton equations (31a) hold by virtue of the condition (40). SubstitutinĝL ◦ s
in the Hamilton equations (31b) and using the relations (38) and (40), we come to the Cartan
equations (16b) for s as follows:

d̂λπ
λ
i ◦ s + (∂iH) ◦ L̂ ◦ s = d̂λπλi ◦ s + (sjµ − ∂jµH ◦ L̂ ◦ s)∂iπµj ◦ s − ∂iL ◦ s

= d̂λπλi ◦ s − (∂µsj − sjµ)∂iπµj ◦ s − ∂iL ◦ s = 0.

�

Remark 1. SinceĤ ◦ L̂ in theorem 8 is a projection operator, the condition (40) implies that
the solutions of the Cartan equations is actually an integrable sections = J 1s wheres is a
solution of the Euler–Lagrange equations. Theorems 7 and 8 show that, if a solution of the
Cartan equations provides a solution of the covariant Hamilton equations, it is necessarily a
solution of the Euler–Lagrange equations.

We will say that a set of Hamiltonian formsH weakly associated with a semiregular
LagrangianL is complete if, for each solutions of the Euler–Lagrange equations, there exists
a solutionr of the Hamilton equations for a Hamiltonian formH from this set such that
s = π5Y ◦ r. By virtue of theorem 8 and remark 1, a set of weakly associated Hamiltonian
forms is complete if, for every solutions onX of the Euler–Lagrange equations forL, there
is a Hamiltonian formH from this set which fulfils the relation (7).

As for the existence of complete sets of weakly associated Hamiltonian forms, we refer
to the following theorem. A LagrangianL is said to be almost regular if: (i)L is semiregular,
(ii) the Lagrangian constraint spaceNL is a closed imbedded subbundleiN : NL ↪→ 5 of the
Legendre bundle5→ Y ; (iii) the Legendre map

L̂ : J 1Y → NL (41)

is a submersion, i.e., a fibred manifold.

Proposition 9 ([12, 15]).LetL be an almost-regular Lagrangian. On an open neighbourhood
in 5 of each pointq ∈ NL, there exist local Hamiltonian forms associated withL which
constitute a complete set.

In the case of an almost-regular LagrangianL, we can say something more on the relations
between Lagrangian and Hamiltonian systems as follows. Let us assume that the fibred
manifold (41) admits a global section9. Let us consider the pull-back

HN = 9∗HL (42)
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called the constrained Hamiltonian form [3, 4]. By virtue of lemma 5, it does not depend on
the choice of a section of the fibred manifoldJ 1Y → NL, and soHL = L̂∗HN . For sections
r of the fibre bundleNL→ X, we can write the constrained Hamilton equations as

r∗(uNcdHN) = 0 (43)

whereuN is an arbitrary vertical vector field onNL → X. These equations possess the
following important properties.

Theorem 10. For any Hamiltonian formH weakly associated with an almost-regular
LagrangianL, every solutionr of the Hamilton equations which lives in the Lagrangian
constraint spaceNL is a solution of the constrained Hamilton equations (43).

Proof. Such a Hamiltonian formH defines the global section9 = Ĥ ◦ iN of the fibred
manifold (41). Due to the relation (37),HN = i∗NH and the constrained Hamilton equations
can be written as

r∗(uNcdi∗N H) = r∗(uNcdH |NL) = 0. (44)

They differ from the Hamilton equations (32) restricted toNL which read

r∗(ucdH |NL) = 0 (45)

wherer is a section ofNL → X andu is an arbitrary vertical vector field on5 → X. A
solutionr of the equations (45) obviously satisfies the weaker condition (44). �

Theorem 11. The constrained Hamilton equations (43) are equivalent to the Hamilton–De
Donder equations (20).

Proof. It is readily seen that̂L = πZ5 ◦ ĤL. Hence, the projectionπZ5 (4) yields a surjection
of ZL onto NL. Given a section9 of the fibred manifold (41), we have the morphism
ĤL ◦9 : NL→ ZL. By virtue of lemma 5, this is a surjection such that

πZ5 ◦ ĤL ◦9 = Id NL .

Hence,ĤL ◦9 is a bundle isomorphism overY which is independent of the choice of a global
section9. Combining (19) and (42) givesHN = (ĤL ◦ 9)∗4L that leads to the desired
equivalence. �

The above proof gives more. Namely, sinceZL andNL are isomorphic, the Legendre
morphismHL fulfils the conditions of theorem 1. Then combining theorems 1 and 11, we
obtain the following theorem.

Theorem 12. LetL be an almost-regular Lagrangian such that the fibred manifold (41) has a
global section. A sections of the jet bundleJ 1Y → X is a solution of the Cartan equations
(17) iff L̂ ◦ s is a solution of the constrained Hamilton equations (43).

Theorem 12 is also a corollary of lemma 13 below. The constrained Hamiltonian form
HN (42) defines the constrained Lagrangian

LN = h0(HN) = (J 1iN )
∗LH (46)

on the jet manifoldJ 1NL of the fibre bundleNL→ X.

Lemma 13. There are the relations

L = (J 1L̂)∗LN LN = (J 19)∗L (47)

whereL is the Lagrangian (14).
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Proof. The first of the relations (47) is an immediate consequence of the relation (39). The
latter follows from the relation(yiµ, ŷ

i
λ, y

i
λµ) ◦ J 1Ĥ = (∂iµH, yiλ, dλ∂iµH) and the relation (35)

if we put 9 = Ĥ ◦ iN for some Hamiltonian formH associated with the almost-regular
LagrangianL. �

The Euler–Lagrange equation for the constrained LagrangianLN (46) are equivalent to the
constrained Hamilton equations and, by virtue of lemma 13, are quasi-equivalent to the Cartan
equations. At the same time, Cartan equations of degenerate Lagrangian systems contain an
additional freedom in comparison with the restricted Hamilton equations (see the next section).

6. Quadratic degenerate systems

This section is devoted to the physically important case of almost-regular quadratic
Lagrangians. Given a fibre bundleY → X, let us consider a quadratic LagrangianL which
has the coordinate expression

L = 1
2a

λµ

ij y
i
λy

j
µ + bλi y

i
λ + c (48)

wherea, b andc are local functions onY . This property is coordinate-independent due to the
affine transformation law of coordinatesyiλ. The associated Legendre map

pλi ◦ L̂ = aλµij yjµ + bλi (49)

is an affine morphism overY . It defines the corresponding linear morphism

L : T ∗X⊗
Y
V Y→

Y
5 pλi ◦ L = aλµij yjµ (50)

whereyjµ are bundle coordinates on the vector bundleT ∗X⊗
Y
V Y .

Let the LagrangianL (48) be almost regular, i.e. the matrix functionaλµij is of constant
rank. Then the Lagrangian constraint spaceNL (49) is an affine subbundle of the Legendre
bundle5 → Y , modelled over the vector subbundleNL (50) of5 → Y . Hence,NL → Y

has a global section. For the sake of simplicity, let us assume that it is the canonical zero
section0̂(Y ) of 5→ Y . ThenNL = NL. Accordingly, the kernel of the Legendre map (49)
is an affine subbundle of the affine jet bundleJ 1Y → Y , modelled over the kernel of the linear
morphismL (50). Then there exists a connection

0 : Y → Ker L̂ ⊂ J 1Y (51)

a
λµ

ij 0
j
µ + bλi = 0 (52)

on Y → X. Connections (51) constitute an affine space modelled over the linear space of
soldering formsφ onY → X satisfying the conditions

a
λµ

ij φ
j
µ = 0 (53)

and, as a consequence, the conditionsφiλb
λ
i = 0. If the Lagrangian (48) is regular, the

connection (51) is unique.
The matrixa in the LagrangianL (48) can be seen as a global section of constant rank of

the tensor bundle
n∧ T ∗X⊗

Y
[

2∨(T X⊗
Y
V ∗Y )] → Y.

Then it satisfies the following corollary of the well known theorem on the splitting of an exact
sequence of vector bundles.
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Lemma 14. Given ak-dimensional vector bundleE → Z, let a be a section of rankr of the

tensor bundle
2∨E∗ → Z. There is a splittingE = Ker a⊕

Z
E′ whereE′ = E/Ker a is the

quotient bundle, anda is a non-degenerate section of
2∨E′∗ → Z.

Theorem 15. There exists a linear bundle map

σ : 5→
Y
T ∗X⊗

Y
V Y yiλ ◦ σ = σ ijλµpµj (54)

such thatL ◦ σ ◦ iN = iN .

Proof. The map (54) is a solution of the algebraic equations

a
λµ

ij σ
jk
µαa

αν
kb = aλνib . (55)

By virtue of lemma 14, there exists the bundle slitting

T ∗X⊗
Y
V Y = Ker a⊕

Y
E′ (56)

and a (non-holonomic) atlas of this bundle such that transition functions of Kera andE′ are

independent. Sincea is a non-degenerate section of
n∧ T ∗X⊗

Y
(

2∨E′∗) → Y , there exists an

atlas ofE′ such thata is brought into a diagonal matrix with non-vanishing componentsaAA.
Due to the splitting (56), we have the corresponding bundle splitting

TX⊗
Y
V ∗Y = (Ker a)∗ ⊕

Y
E′∗.

Then the desired mapσ is represented by a direct sumσ1⊕σ0 of an arbitrary sectionσ1 of the
fibre bundle

n∧ TX⊗
Y
(

2∨Ker a)→ Y

and the sectionσ0 of the fibre bundle

n∧ TX⊗
Y
(

2∨E′)→ Y

which has non-vanishing componentsσAA = (aAA)−1 with respect to the above-mentioned
atlas ofE′. Moreover,σ satisfies the particular relations

σ0 = σ0 ◦ L ◦ σ0 a ◦ σ1 = 0 σ1 ◦ a = 0. (57)

�

The following theorem is the key point of our consideration.

Theorem 16. We have the splittings

J 1Y = S(J 1Y )⊕
Y
F(J 1Y ) = Ker L̂⊕

Y
Im(σ ◦ L̂) (58a)

yiλ = S iλ +F iλ = [yiλ − σ ikλα(aαµkj yjµ + bαk )] + [σ ikλα(a
αµ

kj y
j
µ + bαk )] (58b)

5 = R(5)⊕
Y
P(5) = Ker σ0⊕

Y
NL (59a)

pλi = Rλi + Pλi = [pλi − aλµij σ jkµαpαk ] + [aλµij σ
jk
µαp

α
k ]. (59b)
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Proof. The proof follows from a direct computation by means of the relations (52), (55) and
(57). �

It is readily observed that, with respect to the coordinatesS iλ andF iλ (58b), the Lagrangian
(48) reads

L = 1
2a

λµ

ij F
i
λF jµ + c′ (60)

while the Lagrangian constraint space is given by the reducible constraints

Rλi = pλi − aλµij σ jkµαpαk = 0. (61)

Note that, in gauge theory, we have the canonical splitting (58a) where 2F is the strength
tensor [3,4,11]. The Yang–Mills Lagrangian of gauge theory is exactly of the form (60) where
c′ = 0. The Lagrangian of Proca fields is also of the form (60) wherec′ is the mass term. This
is an example of a degenerate Lagrangian system without gauge symmetries.

Given the linear mapσ (54) and a connection0 (51), let us consider the affine Hamiltonian
map

8 = 0 ◦ π5Y + σ : 5→ J 1Y 8i
λ = 0iλ + σ ijλµp

µ

j (62)

and the Hamiltonian form

H = H8 +8∗L = pλi dyi ∧ ωλ − [0iλp
λ
i + 1

2σ0
ij

λµp
λ
i p

µ

j + σ1
ij

λµp
λ
i p

µ

j − c′]ω
= (Rλi + Pλi ) dyi ∧ ωλ − [(Rλi + Pλi )0iλ + 1

2σ0
ij

λµP
λ
i P

µ

j + σ1
ij

λµp
λ
i p

µ

j − c′]ω. (63)

In particular, ifσ1 is non-degenerate, so is the Hamiltonian form (63).

Theorem 17. The Hamiltonian forms (63) parametrized by connections0 (51) are weakly
associated with the Lagrangian (48) and constitute a complete set.

Proof. By the very definitions of0 andσ , the Hamiltonian map (62) satisfies the condition
(34a). ThenH is weakly associated withL (48) in accordance with proposition 3. Let us write
the corresponding Hamilton equations (31a) for a sectionr of the Legendre bundle5→ X.
They are

J 1s = (0 ◦ π5Y + σ) ◦ r s = π5Y ◦ r. (64)

Due to the surjectionsS andF (58a), the Hamilton equations (64) break in two parts

S ◦ J 1s = 0 ◦ s
∂λr

i − σ ikλα(aαµkj ∂µrj + bαk ) = 0iλ ◦ s
(65)

F ◦ J 1s = σ ◦ r
σ ikλα(a

αµ

kj ∂µr
j + bαk ) = σ ikλαrαk .

(66)

Let s be an arbitrary section ofY → X, e.g. a solution of the Euler–Lagrange equations. There
exists a connection0 (51) such that the relation (65) holds, namely0 = S ◦ 0′ where0′ is a
connection onY → X which hass as an integral section. It is easily seen that, in this case,
the Hamiltonian map (62) satisfies the relation (7) fors. Hence, the Hamiltonian forms (63)
constitute a complete set. �

It is readily observed that, in the caseσ1 = 0,8 = Ĥ and the Hamiltonian forms (63)
are associated with the Lagrangian (48). Thus, for differentσ1, we have different complete
sets of Hamiltonian forms (63). Hamiltonian formsH (63) of such a complete set differ
from each other in the termφiλRλi , whereφ are the soldering forms (53). It follows from the
splitting (59a) that this term vanishes on the Lagrangian constraint space. The corresponding
constrained Hamiltonian formHN = i∗NH and the constrained Hamilton equations (43) can
be written. In the case of quadratic Lagrangians, we can improve theorem 10 as follows.
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Theorem 18. For every Hamiltonian formH (63), the Hamilton equations (31b) and (66)
restricted to the Lagrangian constraint spaceNL are equivalent to the constrained Hamilton
equations.

Proof. Due to the splitting (59a), we have the corresponding splitting of the vertical tangent
bundleVY5 of the Legendre bundle5 → Y . In particular, any vertical vector fieldu on
5→ X admits the decomposition

u = [u− uTN ] + uTN uTN = ui∂i + aλµij σ
jk
µαu

α
k ∂

i
λ

such thatuN = uTN |NL is a vertical vector field on the Lagrangian constraint spaceNL→ X.
Let us consider the equations

r∗(uTNcdH) = 0 (67)

wherer is a section of5→ X andu is an arbitrary vertical vector field on5→ X. They are
equivalent to the pair of equations

r∗(aλµij σ
jk
µα∂

i
λcdH) = 0 (68a)

r∗(∂icdH) = 0. (68b)

The equations (68b) are obviously the Hamilton equations (31b) for H . Bearing in mind the
relations (52) and (57), one can easily show that equations (68a) coincide with the Hamilton
equations (66). The proof is completed by observing that, restricted to the Lagrangian
constraint spaceNL, the equations (67) are exactly the constrained Hamilton equations (44).�

Note that, in Hamiltonian gauge theory, the restricted Hamiltonian form and the restricted
Hamilton equations are gauge invariant.

Theorem 18 shows that, restricted to the Lagrangian constraint space, the Hamilton
equations for different Hamiltonian forms (63) associated with the same quadratic Lagrangian
(48) differ from each other in the equations (65). These equations are independent of momenta
and play the role of gauge-type conditions as follows.

By virtue of theorem 12, the constrained Hamilton equation are quasi-equivalent to the
Cartan equations. A sections of J 1Y → X is a solution of the Cartan equations for an almost-
regular quadratic Lagrangian (48) iffr = L̂ ◦ s is a solution of the Hamilton equations (31b)
and (66). In particular, lets be such a solution of the Cartan equations ands0 a section of
the fibre bundleT ∗X⊗

Y
V Y → X which takes its values into KerL (see (50)) and projects

onto the sections = π1
0 ◦ s of Y → X. Then the affine sums + s0 over s(X) ⊂ Y is also

a solution of the Cartan equations. Thus, we come to the notion of a gauge-type freedom
of the Cartan equations for an almost-regular quadratic LagrangianL. One can speak of the
gauge classes of solutions of the Cartan equations whose elements differ from each other in
the above-mentioned sectionss0. Let z be such a gauge class whose elements project onto a
sections of Y → X. For different connections0 (51), we consider the condition

S ◦ s = 0 ◦ s s ∈ z. (69)

Proposition 19. (i) If two elementss ands ′ of the same gauge classz obey the same condition
(69), thens = s ′. (ii) For any solutions of the Cartan equations, there exists a connection
(51) which fulfils condition (69).

Proof. (i) Let us consider the affine differences − s ′ overs(X) ⊂ Y . We haveS(s − s ′) = 0
iff s = s ′. (ii) In the proof of theorem 17, we have shown that, givens = π0

1 ◦ s, there
exists a connection0 (51) which fulfils the relation (65). Let us consider the affine difference
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S(s−J 1s) overs(X) ⊂ Y . This is a local section of the vector bundle KerL→ Y overs(X).
Let φ be its prolongation ontoY . It is easy to see that0 + φ is the desired connection. �

Due to the properties in proposition 19, one can treat (69) as a gauge-type condition on
solutions of the Cartan equations. The Hamilton equations (65) exemplify this gauge-type
condition whens = J 1s is a solution of the Euler–Lagrange equations. At the same time,
the above-mentioned freedom characterizes solutions of the Cartan equations, but not of the
Euler–Lagrange ones. First of all, this freedom reflects the degeneracy of the Cartan equations
(16a). Therefore, in the Hamiltonian gauge theory, the above freedom is not related directly
to the familiar gauge invariance. Nevertheless, the Hamilton equations (65) are not gauge
invariant, and also can play the role of gauge conditions in gauge theory.
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[2] Cariñena J, Crampin M and Ibort L 1991Differ. Geom. Appl.1 345
[3] Giachetta G and Mangiarotti L 1995Int. J. Theor. Phys.342353
[4] Giachetta G, Mangiarotti L and Sardanashvily G 1997New Lagrangian and Hamiltonian Methods in Field

Theory(Singapore: World Scientific)
[5] Gotay M 1991Mechanics, Analysis and Geometry: 200 Years after Lagrangeed M Francaviglia (Amsterdam:

North-Holland) pp 203–35
[6] Günther C 1987J. Differ. Geom.2523
[7] Kijowski J and Tulczyjew W 1979A Symplectic Framework for Field Theories(Berlin: Springer)
[8] Martin G 1988Lett. Math. Phys.16133
[9] Sardanashvily G and Zakharov O 1993Diff. Geom. Appl.3 245

[10] Sardanashvily G 1993Gauge Theory in Jet Manifolds(Palm Harbour, FL: Hadronic)
[11] Sardanashvily G 1994J. Math. Phys.356584
[12] Sardanashvily G 1995Generalized Hamiltonian Formalism for Field Theory. Constraint Systems(Singapore:

World Scientific)
[13] Sardanashvily G 1997J. Math. Phys.38847
[14] Saunders D 1989The Geometry of Jet Bundles(Cambridge: Cambridge University Press)
[15] Zakharov O 1992J. Math. Phys.33607


