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Abstract. We study the relations between the equations of first-order Lagrangian field theory on
fibre bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase
space of covariant Hamiltonian field theory. If a Lagrangian is hyperregular, these equations are
equivalent. A degenerate Lagrangian requires a set of associated Hamiltonian forms in order
to exhaust all solutions of the Euler—Lagrange equations. The case of quadratic degenerate
Lagrangians is studied in detail.

1. Introduction

The finite-dimensional covariant Hamiltonian approach to field theory has been vigorously
developed since the 1970s in its multisymplectic and polysymplectic variants [4,5,12]. In
the framework of this approach, one deals with the following types of partial differential
equations (PDESs): Euler—-Lagrange and Cartan equations in Lagrangian formalism, Hamilton—
De Donder equations in multisymplectic Hamiltonian formalism, covariant Hamilton equations
and constrained Hamilton equations in polysymplectic Hamiltonian formalism. IfaLagrangian
is hyperregular, allthese PDEs are equivalent. This work addresses degenerate semiregular and
almost-regular Lagrangians. From the mathematical viewpoint, these notions of degeneracy
are particularly appropriate for the study of relations between the above-mentioned PDEs.
From the physical one, Lagrangians of almost all field theories are of these types.

To formulate our results, let us characterize briefly the equations under consideration.
Given a fibre bundl¢ — X coordinated byx*, y'), let

L=_Lw:JY - AT*X w=dxlA.. . dx" n = dimX 1)

be a first-order Lagrangiah on the jet bundle/Y — X. The first variational formula
provides the associated Euler—-Lagrange equations. The Cartan equations characterize the
variational problem on the repeated jet manifdit/ 'y for the Poincag—Cartan formd, .

The Poincag—Cartan formH, yields the Legendre morphis#d;, of J1Y to the homogeneous
Legendre bundle

Zy = T*Y A (A T*X) @)

which is the af'fine"/_\1 T*X-valued dual of/1'Y — Y provided with the canonical exterior
n-form By (18)[2,5]. If H, (J'Y)isan embedded subbundlezf — Y, the pull-back of2y
yields the Hamilton—-De Donder equations Bp(J1Y). If a LagrangianL is almost regular,
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these equations are quasi-equivalent to the Cartan equations, i.e., there is a surjection of the
set of solutions of the Cartan equations onto that of the Hamilton—De Donder equations [5].
A LagrangianL yields the Legendre map of J'Y to the Legendre bundle

M=AT'XQVYRTX (3)
Y Y
equipped with the holonomic coordinatés', y', p}). Tl is provided with the canonical

polysymplectic form2 (22), and is seen as a momentum phase space of fields [3,6,7,9, 11].
We have the one-dimensional affine bundle

wzn i Zy — Il 4)
Given any sectioi of Zy — II, the pull-back

H=h*Ey = p}dy’ Aw, — Ho W), = 0] (5)
is a Hamiltonian form o1 [2,4, 12]. This is the Poincar~Cartan form of the Lagrangian

Ly = (ply; — H)w (6)

on the jet manifold/*I1. The associated Euler—Lagrange equations are the covariant Hamilton
equations (34), (31b). Every Hamiltonian formH (6) yields the Hamiltonian magl (29) of
MtoJly.

The results of this paper demonstrate that polysymplectic Hamiltonian formalism can
provide an adequate description of degenerate field systems which do not necessarily possess
gauge symmetries.

We show that, ifr : X — II is a solution of the covariant Hamilton equations for
a Hamiltonian formH associated with a semiregular Lagrangiarand if r lives in the
Lagrangian constraint spade(J1Y), then H o r is a solution of the Cartan equations for
L, while the projectiory of r ontoY is that of the Euler-Lagrange equations. The converse
assertion is more intricate. One needs a complete set of associated Hamiltonian forms in order
to exhaust all solutions of the Euler—Lagrange equations (but not the Cartan equations). Given
a solutions of the Euler—Lagrange equatiorise J1s is a solution of the Hamilton equations
for an associated Hamiltonian forh iff

HolLolJYs=1J%. @)

If a solutions of the Cartan equations provides the solutibr 5 of covariant Hamilton
equations, its projectiononY is a solution of the Euler—Lagrange equations.

Inview of these relations, one may conclude that the covariant Hamilton equations contain
additional conditions in comparison with the Euler-Lagrange and Cartan equations. In the
case of an almost-regular Lagrangian, we can introduce the constrained Hamilton equations
which are weaker than the Hamilton equations restricted to the Lagrangian constraint space
[3,4,13]. They are equivalent to the Hamilton—De Donder equations and, consequently, are
quasi-equivalent to the Cartan equations.

We provide the detailed analysis of degenerate quadratic Lagrangian systems, appropriate
for application to many physical models. Given a quadratic Lagrangiave find a complete
set of associated Hamiltonian forms. The key point is the splitting'af into the dynamic
sector and the gauge one coinciding with the kernel of the Legendré m&pa consequence,
one can separate a part of the Hamilton equations independent of momenta which play the
role of gauge-type conditions, while the rest equations restricted to the Lagrangian constraint
space coincide with the constrained Hamilton equations, and are quasi-equivalent to the Cartan
equations. We observe that the main features in gauge theory are not directly related to the
gauge invariance condition, but are common in all field models with degenerate almost-regular
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quadratic Lagrangians. The important peculiarity of the Hamiltonian description of these
models lies in the fact that, in comparison with a Lagrandiaany associated Hamiltonian

form H and the Lagrangiaih; (6) contain gauge fixing terms. Moreover, one can find a
complete set of non-degenerate Hamiltonian forms associated with a degenerate quadratic
Lagrangian, that is essential for quantization.

The plan of the paper is as follows. Section 2 presents some technical preliminaries. In
section 3, the relations between Euler-Lagrange, Cartan and Hamilton—De Donder equations
are summarized in a form suitable for our purposes. Section 4 provides a brief exposition
of covariant Hamiltonian dynamics. In comparison with our previous works, we use the
Lagrangiarn g (6) as a convenient tool in order to introduce the covariant Hamilton equations.
Section 5 is devoted to the above-mentioned relations between degenerate Lagrangian and
Hamiltonian systems. Degenerate quadratic Lagrangian systems are studied in section 6.

2. Technical preliminaries

All maps throughout the paper are smooth, while manifolds are real, finite-dimensional,
Hausdorff, second-countable and connected. A base markf@driented.

Let us recall some notions [4, 10, 14]. Given a fibre bunidle> X, the s-order jet
manifold J*Y is endowed with the adapted coordinates, yj\), 0< |A] < s,whereA isa
symmetric multi-index(%; ... A1), |A| = k. The repeated jet manifold* /'Y is coordinated

by (x*, ¥, ¥4, 5 Yi,0)-

Exterior formsp onJ*Y,s = 0, 1, ..., are naturally identified with their pull-backs onto
J5*Y. There is the exterior algebra homomorphism
ho : ¢y dx” + ¢t dy) = (6 + ¢ y.,) di (8)

called the horizontal projection. It sends exterior formsJoi onto the horizontal forms
on J**'Y — X, and vanishes on the contact forfijs = dy’, — yi,, dx*. Recall also the
total derivatived, = 9, + yi,, 9 and the horizontal differentialgp = dx* A dy¢ such that
hood=dy o hg.

We regard a connection on a fibre bunéfle> X as a global section

I=dx* ® (3, +T89;) 9)

of the affine jet bundlem} . JYY — Y. Sections of the underlying vector bundle

T*X ® VY — Y are called soldering forms.
Y

3. Lagrangian dynamics

Given a Lagrangiarl and its Lepagean equivaleht;, the first variational formula of the
calculus of variations provides the canonical decomposition of the Lie derivativalaing a
projectable vector field onY:

Ly L =uy|E +dyho(u]Hy) (10)
whereuy = (u|6")9; and

£ = (@ — ddLO Aw: J2Y — T*Y A (AT*X) (11)
is the Euler—Lagrange operator. Its kernel is the Euler-Lagrange equation on

(0 —dy 3L =0. (12)

We will restrict our consideration to the PoinéaCartan form
Hy=L+7}0" A, nl =L (13)
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Being a Lepagean equivalent of the Lagrangiasa: ho(H;) on J1Y, this is also a Lepagean
equivalent of the Lagrangian

L =ho(Hy) = (L+ (@, —yDrho  hody') = ] di* (14)
on the repeated jet manifolth /1Y . The Euler—Lagrange operator fbrreads

&1 JYY - T*JY A (AT*X)

Er = 0L — dyr] + 0wt (G — y)) dy' + 3}l G) — yD dvi] A (15)

dy =8+ 9,0 + Y300

Its kernel Kerér ¢ J1J1Y is the Cartan equations

N
o3, —y)=0 (16)
oL —diw + (] — y)oim) = 0. (16b)

Sinceé&r |2y = &1, the Cartan equations (&p (16b) are equivalent to the Euler—Lagrange
equations (12) on integrable sectionsJdf — X. These equations are equivalent in the
case of regular Lagrangians. On sectisnst — J'Y, the Cartan equations (4§ (160) are
equivalent to the relation

s (u|dH,) =0 (17)

which is assumed to hold for all vertical vector fieldsn J'Y — X.
The Poincag—Cartan fornH; (13) yields the above-mentioned Legendre morphism

Hy: JY — Zy (pl'.p)o Hy = (', L —7l'yl)
where the bundl€y (2) is equipped with holonomic coordinates', y', p?, p). Due to the
monomorphisnZy — A T*Y, the bundleZy is endowed with the pull-back

Ey = po+ pldy’ A w, (18)

of the canonical form® on A T*Y whose exterior differential @ is the n-multisymplectic
form in the sense of Martin [1, 8].

LetZ; = ﬁL(JlY) be an embedded subbundle Z; — Zy of Zy — Y. Itis provided
with the pull-back De Donder forrg,, = i} 2y. We have

H, = H 8, = H; (i} Ey). (19)

By analogy with the Cartan equations (17), the Hamilton—-De Donder equations for séctions
of Z; — X are written as

7 (u]dE.) =0 (20)

whereu is an arbitrary vertical vector field ad; — X.

Theorem 1 ([5]). Let the Legendre morphisrﬁL be a submersion. Then a sectigrof

J1Y — X is a solution of the Cartan equations (17) Hf o5 is a solution of the Hamilton—

De Donder equations (20); i.e., as was mentioned above, the Cartan and Hamilton—De Donder
equations are quasi-equivalent.
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4. Covariant Hamiltonian dynamics

Given a fibre bundl¢ — X, let
Tnx =mompy .11 —->Y —> X

be the Legendre bundle (3). The canonical polysymplectic form, Hamiltonian connections
and Hamiltonian forms are the main ingredients in the covariant Hamiltonian dynamics on
(see [2,4,12] for a detailed exposition).

Let us consider the canonical bundle monomorphism

Gz—pfdy"/\a)@a,\:H?H/Jr\lT*Y@TX. (21)
Y
The polysymplectic form offil is defined as a uniquEX-valued(n + 2)-form
Q=dp} Ady Ao ® 3 (22)
such that the relatiof |¢ = —d(0¢) holds for any exterior one-for on X. A connection
y =de* @ (3, +yi0; + 49%) (23)

onIl1 — X is called a Hamiltonian connection if the exterior fojQ2 is closed. A
Hamiltonian formH onIT has been defined above as the pull-b&tEy (5) of the canonical
form Ey (18) by a sectiork of the fibre bundle (4).

Theorem 2 ([10, 12]).For every Hamiltonian formH (5), there exists an associated
Hamiltonian connection such that

vlQ=dH  yi=9H  y;=-0H (24)
Conversely, for any Hamiltonian connectipnthere exists a local Hamiltonian for# on a
neighbourhood of any poift € IT such that the relation (24) holds.

Hamiltonian forms onf1 constitute an affine space modelled over the linear space of
horizontal densitie$/ = Hw onIl — X. This is an immediate consequence of the fact that
(4) is an affine bundle modelled over the pull-back vector buitibe A T*X — TI. Every

X
connectiol” (9) onY — X defines the section

hr o dy' > dy' — I dx*
of the affine bundleZzy — IT and the corresponding Hamiltonian form
Hr = hi8y = pldy’ Aw;, — piT . (25)

As a consequence, given a connectioon Y — X, every Hamiltonian formH admits the
decomposition

H = Hr — Hr = pldy’ Aw, — piTiw — Hro. (26)
Any bundle morphism
O =dx*® (9, + D) : H—Y>J1Y (27)

called a Hamiltonian map, defines the Hamiltonian form

Hey = ®]0 = pldy’ A w;, — p}®w. (28)
Every Hamiltonian form# (5) yields the Hamiltonian ma@l such that

yioH=0H. (29)
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As was mentioned above, a Hamiltonian fofin(5) onIT can be seen as the Poingar
Cartan form of the Lagrangiaby; = ho(H) (6) on the jet manifold/*I1. The Euler-Lagrange
operator (11) fol 4, called the Hamilton operator fd{, is

Sy JMT = TTI A (AT*X)

i i A A i (30)
En = [0y — G H)dp — (p3; + 0H) dy'] A w.
Its kernel is the covariant Hamilton equations
vi=an (312)
P = —dH. (31b)

It is readily observed that all Hamiltonian connections (24) associated with a Hamiltonian
form H live in the kernel of the Hamilton operatéy;. Consequently, every integral section
J'r = y or of a Hamiltonian connectiop associated with a Hamiltonian forfi is a solution
of the Hamilton equations (3], (31b).

Note that, similarly to the Cartan equations (17), the Hamilton equatiog, (&llb) are
equivalent to the condition

r*(uJdH) =0 (32)
for any vertical vector field onIT — X. The Hamilton equation (3) can also be written as
the equality

J nyory=Hor. (33)

5. Lagrangian and Hamiltonian degenerate systems

Let us study the relations between Hamilton and Euler—Lagrange equations when a Lagrangian
is degenerate. Their main peculiarity is that there is a set of Hamiltonian forms associated with
the same degenerate Lagrangian.

Given a Lagrangiat, let

L:ity—n  plol=x}

be the corresponding Legendre map. A Hamiltonian féfns said to be associated with a
LagrangianL if H satisfies the relations

LoHoL =1 (34a)

H=Hg+H'L. (34b)
A glance at the relation (24 shows that_ o H is the projector

pl@) = d'LG" Y OH(@) g eN, (35)

from I1 onto the Lagrangian constraint spabe = L(JY). Accordingly, H o L is the
projector fromJ'Y onto H(N;). A Hamiltonian form is called weakly associated with
a Lagrangianl if the condition (34) holds on the Lagrangian constraint spaég. The
following assertions take place [4, 10].

Proposition 3. If a Hamiltonian mapd (27) obeys the relation (34a), then the Hamiltonian
form H = Hy + ®*L is weakly associated with the Lagrangi@n If ® = H, thenH is
associated withL.

Proposition 4. Any Hamiltonian formH weakly associated with a Lagrangidnobeys the
relation

Hly, = H*Hp |y, (36)
whereH, is the Poincaé—Cartan form (13).
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The difference between associated and weakly associated Hamiltonian forms lies in the
following. Let H be an associated Hamiltonian form, i.e., the equalityp)8#lds everywhere
onTI. It takes the coordinate form
H(g) = pl'diH — LG, v/, 8] H(q)) q€NL.
Acting on this equality by the exterior differential, we obtain the relations
M@ =—@uL)oH(g)  dH(@) =—@L)oH(@  qeNg
(Pl = (@ L)(x", 7, 8] 1)) 85H = 0.
The last of these shows that the associated Hamiltonian form is not regular outside the
Lagrangian constraint spaéé . In particular, any Hamiltonian form is weakly associated
with the Lagrangiarl. = 0, while the associated Hamiltonian forms are only of the féfm
(25).
Something more can be said in the case of semiregular Lagrangians. A Lagrangian

called semiregular if the pre-imade1(¢) of any pointg € N, is a connected submanifold
of J1Y. We now introduce the following lemma [10, 15].

Lemma 5. The Poincaé—Cartan form#,, for a semiregular Lagrangiad. is constant on the
connected pre-image~'(g) of any pointy € N;.

Corollary 6. All Hamiltonian forms weakly associated with a semiregular Lagrangian
coincide with each other on the Lagrangian constraint spaAge and the Poincag—Cartan
form Hy (13) for L is the pull-back

H, = L*H @}y, = Lo = HE", y/, 7l (37)
of any such a Hamiltonian forril.

Corollary 6 enables us to connect Euler—Lagrange and Cartan equations for a semiregular
LagrangianZ with Hamilton equations for Hamiltonian forms weakly associated Wwith

Theorem 7. Let a section of [1 — X be a solution of the Hamilton equations (31a), (31b)
for a Hamiltonian formH weakly associated with a semiregular Lagrangianlf r lives in
the constraint spacéV;, the sectiors = npy o r of Y — X satisfies the Euler—Lagrange
equations (12), while = H o r obeys the Cartan equations (16a), (16b).

Proof. Acting by the exterior differential on the relation (37), we obtain the relation
() =8 HoLydn* Aw — (0,L+8(HoL)dy Aw=0 (38)
which is equivalent to the system of equalities
Pyl —daiHoL)=0 it (vi —diHo L) — (B L+@H)oL)=0.
Using these equalities and the relatigrt, y!,, p};) o JUL = (n}, s d,m}), one can easily

see that} = (JILy*Ey, whereéy is the Euler—Lagrange—Cartan operator (15). Lbe a

section ofl1 — X which lives in the Lagrangian constraint spaég, ands = H o r. Then
we have

r=~Los Jir=J o J%.
If r is a solution of the Hamil}on equations, the exterior f@mvanishes o 'r(X). Hence,
the pull-back formey = (J1L)*Ey vanishes on/15(X). It follows thats obeys the Cartan

equations (18), (160). We obtain from the equality (33) that= J1s, s = nry or. Hences
is a solution of the Euler-Lagrange equations. |
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The same result can be obtained from the relation
L=UMN)Ly (39)
whereL is the Lagrangian (14) oi'JY andLy is the Lagrangian (6) oIT.

Theorem 8. Given a semiregular Lagrangiah, let a sectiors of the jet bundle/'yY — X
be a solution of the Cartan equations (16a), (16b). Eebe a Hamiltonian form weakly
associated withL, and letH satisfy the relation

ﬁoioEZJl(n&OE). (40)

Then, the section = L o 5 of the Legendre bundlEl — X is a solution of the Hamilton
equations (31a), (31b) faH.

Proof. The Hamilton equations (2] hold by virtue of the condition (40). Substitutirgo 5
in the Hamilton equations (8) and using the relations (38) and (40), we come to the Cartan
equations (16) for 5 as follows:

dyw} oS+ @H)oLos =dym} o5+ 5], — ) HoLondn) o5 —iLoF
=dyn} o5 — (3,5 —F))n! oF — ;L 05 = 0.

O

Remark 1. SinceH o L in theorem 8 is a projection operator, the condition (40) implies that
the solutiors of the Cartan equations is actually an integrable sectioa J's wheres is a
solution of the Euler-Lagrange equations. Theorems 7 and 8 show that, if a solution of the
Cartan equations provides a solution of the covariant Hamilton equations, it is necessarily a
solution of the Euler—Lagrange equations.

We will say that a set of Hamiltonian formd weakly associated with a semiregular
LagrangianL is complete if, for each solutionof the Euler-Lagrange equations, there exists
a solutionr of the Hamilton equations for a Hamiltonian ford from this set such that
s = mny o r. By virtue of theorem 8 and remark 1, a set of weakly associated Hamiltonian
forms is complete if, for every solutianon X of the Euler—Lagrange equations fbr there
is a Hamiltonian formH from this set which fulfils the relation (7).

As for the existence of complete sets of weakly associated Hamiltonian forms, we refer
to the following theorem. A Lagrangiahis said to be almost regular if: (I) is semiregular,
(ii) the Lagrangian constraint spadg, is a closed imbedded subbundle: N, < TII of the
Legendre bundl€l — Y; (iii) the Legendre map

L:JY - N, (41)
is a submersion, i.e., a fibred manifold.

Proposition 9 ([12, 15]). Let L be an almost-regular Lagrangian. On an open neighbourhood
in IT of each pointy € N,, there exist local Hamiltonian forms associated withwhich
constitute a complete set.

Inthe case of an almost-regular Lagranglanve can say something more on the relations
between Lagrangian and Hamiltonian systems as follows. Let us assume that the fibred
manifold (41) admits a global sectich. Let us consider the pull-back

Hy = V*H, (42)
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called the constrained Hamiltonian form [3,4]. By virtue of lemma 5, it does not depend on
the choice of a section of the fibred manifoldY — N,, and soH, = L*Hy. For sections
r of the fibre bundleV, — X, we can write the constrained Hamilton equations as

r(uy]dHy) =0 (43)

whereuy is an arbitrary vertical vector field ov; — X. These equations possess the
following important properties.

Theorem 10. For any Hamiltonian formH weakly associated with an almost-regular
Lagrangian L, every solutiorr of the Hamilton equations which lives in the Lagrangian
constraint spaceV, is a solution of the constrained Hamilton equations (43).

Proof. Such a Hamiltonian fornf defines the global sectiowr = H o iy of the fibred
manifold (41). Due to the relation (37}{y = i} H and the constrained Hamilton equations
can be written as

r*(uy]diy, H) = r*(uy]dH|y,) = 0. (44)
They differ from the Hamilton equations (32) restricted\p which read

r*(u)dH|x,) = 0 (45)
wherer is a section ofN, — X andu is an arbitrary vertical vector field o — X. A
solutionr of the equations (45) obviously satisfies the weaker condition (44). O

Theorem 11. The constrained Hamilton equations (43) are equivalent to the Hamilton—De
Donder equations (20).

Proof. Itis readily seen thal = 7, o H;. Hence, the projection, (4) yields a surjection
of Z, onto N;. Given a section¥ of the fibred manifold (41), we have the morphism
H; oWV : N, — Z;. By virtue of lemma 5, this is a surjection such that

ﬂZHOHLOqJZIdNL.

Hence,H; o ¥ is a bundle isomorphism ovérwhich is independent of the choice of a global
section¥. Combining (19) and (42) givelly = (H, o ¥)*E, that leads to the desired
equivalence. O

The above proof gives more. Namely, sincég and N, are isomorphic, the Legendre
morphismH, fulfils the conditions of theorem 1. Then combining theorems 1 and 11, we
obtain the following theorem.

Theorem 12. Let L be an almost-regular Lagrangian such that the fibred manifold (41) has a
global section. A sectioh of the jet bundle/'Y — X is a solution of the Cartan equations
(17) iff L o5 is a solution of the constrained Hamilton equations (43).

Theorem 12 is also a corollary of lemma 13 below. The constrained Hamiltonian form
Hy (42) defines the constrained Lagrangian

Ly = ho(Hy) = (JYin)*Ly (46)
on the jet manifold/1N; of the fibre bundlev, — X.
Lemma 13. There are the relations

L= Ly Ly = (JY)*L (47)
whereL is the Lagrangian (14).
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Proof. The first of the relations (47) is an immediate consequence of the relation (39). The
latter follows from the relationy’,, 91, yi ) o J*H = (3}, H. y;. d,9), 1) and the relation (35)

if we put W = H o iy for some Hamiltonian formH associated with the almost-regular
LagrangianL. a

The Euler—Lagrange equation for the constrained Lagrargia@6) are equivalent to the
constrained Hamilton equations and, by virtue of lemma 13, are quasi-equivalent to the Cartan
equations. At the same time, Cartan equations of degenerate Lagrangian systems contain an
additional freedom in comparison with the restricted Hamilton equations (see the next section).

6. Quadratic degenerate systems

This section is devoted to the physically important case of almost-regular quadratic
Lagrangians. Given a fibre bundle— X, let us consider a quadratic Lagrangiamwhich
has the coordinate expression

L= 3a!' iy + by, +c (48)

wherea, b andc are local functions of. This property is coordinate-independent due to the
affine transformation law of coordinates. The associated Legendre map

R [
pioL=aj'y] +b} (49)
is an affine morphism ove¥. It defines the corresponding linear morphism
L:T*XQVY—Tl ptol =dl'y/ (50)
)% Y J 1%

wherey{t are bundle coordinates on the vector buriti&X @ VY.
Y

Let the Lagrangiarl. (48) be almost regular, i.e. the matrix functiaf}” is of constant
rank. Then the Lagrangian constraint spage(49) is an affine subbundle of the Legendre
bundlelT — Y, modelled over the vector subbundie (50) of IT — Y. Hence,N;, — Y
has a global section. For the sake of simplicity, let us assume that it is the canonical zero
section0(Y) of [T — Y. ThenN, = N,. Accordingly, the kernel of the Legendre map (49)
is an affine subbundle of the affine jet bundfey — Y, modelled over the kernel of the linear
morphismL (50). Then there exists a connection

F:Y—KerlLcJy (51)
a;'Ti+b =0 (52)
onY — X. Connections (51) constitute an affine space modelled over the linear space of
soldering formsp onY — X satisfying the conditions
al'¢) =0 (53)
and, as a consequence, the conditighs = 0. If the Lagrangian (48) is regular, the
connection (51) is unique.

The matrixa in the Lagrangiari. (48) can be seen as a global section of constant rank of
the tensor bundle

n 2
AT*X R[V(TX ® V*Y)] — V.
Y Y

Then it satisfies the following corollary of the well known theorem on the splitting of an exact
sequence of vector bundles.
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Lemma 14. Given ak-dimensional vector bundlE — Z, leta be a section of rank of the
2
tensor bundlev E* — Z. There is a splitting = Ker a @ E’ whereE’ = E/Ker a is the
Z

. . ) 2
quotient bundle, and is a non-degenerate sectionofE™ — Z.

Theorem 15. There exists a linear bundle map

. * —i _ i
o M—>T"XQVY Y, 00 =0, p" (54)
suchthatL oo oiy = iy.

Proof. The map (54) is a solution of the algebraic equations

Ml.o_jka(xv — a;\bv' (55)

aij no kb

By virtue of lemma 14, there exists the bundle slitting
T*XQVY =Kera® E’ (56)
Y Y
and a (non-holonomic) atlas of this bundle such that transition functions of lked E’ are
. . . . 2 .
independent. Since is a non-degenerate section of* X ®(V E™) — Y, there exists an
Y

atlas of E’ such that is brought into a diagonal matrix with non-vanishing componenits
Due to the splitting (56), we have the corresponding bundle splitting

TX®V*Y = (Ker a)* ® E”*.
Y Y

Then the desired mapis represented by a direct suméa® o of an arbitrary section; of the
fibre bundle

n 2
ATXQ®(VKera) —Y
Y
and the sectiong of the fibre bundle
n 2
ATX®WVE)—=Y
Y

which has non-vanishing components, = (a*4)~! with respect to the above-mentioned
atlas ofE’. Moreover satisfies the particular relations

00 =00 L ooy aoo; =0 or0a =0. (57)
O
The following theorem is the key point of our consideration.

Theorem 16. We have the splittings

JYY =SUY)e FUY) =Ker L& lm(o o L) (582)
Y Y
V=S F= D — o @y + D]+ [0 (g v + b)) (58b)
1 =R(IT) ®P(I1) = Ker oo ® Ny, (5%)
Y Y

M e _j
pr=R}+Pt=[p} — aijﬂaﬁip,‘f] + [aijﬂadi;p,'f]. (5%)

1



6640 G Giachetta et al

Proof. The proof follows from a direct computation by means of the relations (52), (55) and
(57). O

Itis readily observed that, with respect to the coordinafesndF! (58b), the Lagrangian
(48) reads

L=3al' FiF,+¢ (60)
while the Lagrangian constraint space is given by the reducible constraints
R:\ = p?‘ - a?j”al-jip,‘: =0. (61)

Note that, in gauge theory, we have the canonical splitting)(@®ere 2F is the strength
tensor [3,4,11]. The Yang—Mills Lagrangian of gauge theory is exactly of the form (60) where
¢’ = 0. The Lagrangian of Proca fields is also of the form (60) wheiethe mass term. This
is an example of a degenerate Lagrangian system without gauge symmetries.

Given the linear map (54) and a connectioln (51), let us consider the affine Hamiltonian
map

®=Tomny+o:M—JY @, =T} +0, pl (62)
and the Hamiltonian form
H = Ho +®*L = p} dy' Aw, — [T} p} + 300}, p} P! + 01}, p P} — lo
= (R} +PHdy Aw, — [(R} +PHIL + %O’o;{M'P?P;% + olijﬂp?p? —lw. (63)
In particular, ifoq is non-degenerate, so is the Hamiltonian form (63).

Theorem 17. The Hamiltonian forms (63) parametrized by connectiobng&1) are weakly
associated with the Lagrangian (48) and constitute a complete set.

Proof. By the very definitions of” ando, the Hamiltonian map (62) satisfies the condition
(34a). ThenH is weakly associated with (48) in accordance with proposition 3. Let us write
the corresponding Hamilton equations éB31or a section- of the Legendre bundl®l — X.
They are

JlS:(FOﬂny+U)Or § =Ty or. (64)
Due to the surjections§ and.F (58a), the Hamilton equations (64) break in two parts

SoJls=Tos

' — ojs (@l 0! +bf) =T} o (69)

Folls=oor (66)

ok (a,‘j;‘aurf +b%) = ojkre.
Lets be an arbitrary section af — X, e.g. a solution of the Euler—Lagrange equations. There
exists a connectiofl (51) such that the relation (65) holds, namEly= S o I wherel” is a
connection or¥ — X which hass as an integral section. It is easily seen that, in this case,
the Hamiltonian map (62) satisfies the relation (7)sfoHence, the Hamiltonian forms (63)
constitute a complete set. a

It is readily observed that, in the case = 0, ® = H and the Hamiltonian forms (63)
are associated with the Lagrangian (48). Thus, for diffesentve have different complete
sets of Hamiltonian forms (63). Hamiltonian fornds (63) of such a complete set differ
from each other in the tergy, R, whereg are the soldering forms (53). It follows from the
splitting (5%) that this term vanishes on the Lagrangian constraint space. The corresponding
constrained Hamiltonian formidy = i} H and the constrained Hamilton equations (43) can
be written. In the case of quadratic Lagrangians, we can improve theorem 10 as follows.
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Theorem 18. For every Hamiltonian formH (63), the Hamilton equations (31b) and (66)
restricted to the Lagrangian constraint spadi are equivalent to the constrained Hamilton
equations.

Proof. Due to the splitting (58), we have the corresponding splitting of the vertical tangent
bundle Vy 11 of the Legendre bundl€l — Y. In particular, any vertical vector field on
IT — X admits the decomposition

_ _ i M jk o ani
u=1[u—uryltury ury = u'd; +a;; o,,uy0;

such thaity = ury|y, is a vertical vector field on the Lagrangian constraint spgéce-> X.
Let us consider the equations

wherer is a section of1 — X andu is an arbitrary vertical vector field di — X. They are
equivalent to the pair of equations

r(al'o)tdi JdH) = 0 (6%)
r*(8;JdH) = 0. (68b)

The equations (88 are obviously the Hamilton equations (§Xor H. Bearing in mind the
relations (52) and (57), one can easily show that equatiorey (®@8ncide with the Hamilton
equations (66). The proof is completed by observing that, restricted to the Lagrangian
constraint spac#’; , the equations (67) are exactly the constrained Hamilton equation§{44).

Note that, in Hamiltonian gauge theory, the restricted Hamiltonian form and the restricted
Hamilton equations are gauge invariant.

Theorem 18 shows that, restricted to the Lagrangian constraint space, the Hamilton
equations for different Hamiltonian forms (63) associated with the same quadratic Lagrangian
(48) differ from each other in the equations (65). These equations are independent of momenta
and play the role of gauge-type conditions as follows.

By virtue of theorem 12, the constrained Hamilton equation are quasi-equivalent to the
Cartan equations. A sectigrof J1Y — X is a solution of the Cartan equations for an almost-
regular quadratic Lagrangian (48) iff= L o 5 is a solution of the Hamilton equations (31
and (66). In particular, Ief be such a solution of the Cartan equations &nd section of
the fibre bundler* X <§> VY — X which takes its values into Kek (see (50)) and projects

onto the section = n(} os of Y — X. Then the affine sur + 5o overs(X) C Y is also

a solution of the Cartan equations. Thus, we come to the notion of a gauge-type freedom
of the Cartan equations for an almost-regular quadratic Lagrargiddne can speak of the
gauge classes of solutions of the Cartan equations whose elements differ from each other in
the above-mentioned sectiorg Let z be such a gauge class whose elements project onto a
sections of Y — X. For different connectionB (51), we consider the condition

Sos=Tos sez. (69)

Proposition 19. (i) If two elements ands’ of the same gauge clas®bey the same condition
(69), thens = 5. (ii) For any solutions of the Cartan equations, there exists a connection
(51) which fulfils condition (69).

Proof. (i) Let us consider the affine differenge- 5" overs(X) C Y. We haveS(s —5') =0

iff 5 = 5. (i) In the proof of theorem 17, we have shown that, gives =? o 5, there

exists a connectiof (51) which fulfils the relation (65). Let us consider the affine difference
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S(x—Jts) overs(X) C Y. Thisis alocal section of the vector bundle Ker— Y overs(X).
Let ¢ be its prolongation ontd. It is easy to see that + ¢ is the desired connection. [

Due to the properties in proposition 19, one can treat (69) as a gauge-type condition on
solutions of the Cartan equations. The Hamilton equations (65) exemplify this gauge-type
condition whers = J1s is a solution of the Euler—Lagrange equations. At the same time,
the above-mentioned freedom characterizes solutions of the Cartan equations, but not of the
Euler—Lagrange ones. First of all, this freedom reflects the degeneracy of the Cartan equations
(16a). Therefore, in the Hamiltonian gauge theory, the above freedom is not related directly
to the familiar gauge invariance. Nevertheless, the Hamilton equations (65) are not gauge
invariant, and also can play the role of gauge conditions in gauge theory.
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